
New Approaches To
Debugging Complex Codes

!

Ed Hinkel, Sales Engineer
Rogue Wave Software

Facing the challenges of

or

Agenda

•  Introduction – Rogue Wave!

• TotalView!

• Approaching the Debugging Challenge!
1   TVScript – Automate Your Debugging!

2   MemoryScape – Don’t Forget the Memory!!

3   Replay Engine – Shift into Reverse if You Want!"

4   CUDA – Accelerate your Development Schedule!

5   Performance – Memory Cache Usage Efficiency!

!

Rogue Wave Today

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 3

Leader in embeddable math
and statistics algorithms and

visualization software for data-
intensive applications.

Industry-leading interactive
analysis and debugging tools for
the world's most sophisticated

software applications.

Leading provider of intelligent
software technology which

analyzes and optimizes computing
performance in single and multi-

core environments.

The largest independent provider of
cross-platform software development
tools and embedded components for

the next generation of HPC
applications

PyIMSL
ReplayEngine

TotalView

MemoryScape

Rogue Wave Product Offerings

| Copyright © 2011 Rogue Wave Software | All Rights Reserved 4

IMSL

SourcePro C++

PV-WAVE

ThreadSpotter

What is TotalView?
A comprehensive debugging solution for demanding applications

on parallel, multi-core and hybrid systems!

5

•  Wide compiler & platform
support
•  C, C++, Fortran 77 & 90, UPC
•  Unix, Linux, OS X

•  Handles Concurrency
•  Multi-threaded Debugging
•  Multi-process Debugging

•  Integrated Memory Debugging
•  Reverse Debugging available
•  Supports Multiple Usage Models

•  Powerful and Easy GUI – Highly Graphical

•  CLI for Scripting
•  Long Distance Remote Debugging
•  Unattended Batch Debugging

Facing the Debugging
Challenge

1

7

Unattended Debugging
tvscript

8

Unattended Debugging

•  tvscript provides for unattended,
straightforward TotalView batch debugging
•  As an adjunct to interactive debugging
•  Usable whenever jobs need to be submitted or batched
•  Provides a tool more powerful and flexible than Printf-

style debugging
•  Can be used to automate test/verify environments

Think of tvscript as “Printf on steroids”!

Debugging with TVScript

•  TVScript
•  Define events

•  Breakpoints, memory errors, etc..

•  Provide actions to take in response to these events
•  Print variables or create memory reports

•  Run an MPI or serial program toward completion
•  With no user interaction

•  More powerful and flexible than Printf-style debugging
•  Use to prepare and guide interactive debugging
•  Use whenever jobs need to be submitted into a managed environment
•  Can be used to automate test/verify environments

10

Unattended Debugging

•  Using tvscript, multiple debugging sessions can
be run without the need for recompiling, unlike
with printf

•  A single compile is all that’s needed, i.e.,
•  gcc -g -o server-dbg server.c

•  tvscript syntax: !
•  tvscript [options] [filename] [-a program_args]

Typical Events
•  Action_point
•  Any_memory_event
•  Guard_corruption error

Typical Actions
•  Display_backtrace [-level level-num]
•  List_leaks
•  Save_memory
•  Print [-slice {slice_exp] {variable | exp}

TVscript uses a simple, Event/Action interface

TVscript Provides Unattended, Straightforward Batch Debugging

•  A single compile is all that’s needed, i.e.,
 gcc -g -o server-dbg server.c

•  tvscript syntax: !
 tvscript [options] [filename] [-a program_args]

tvscript

Unattended Debugging with Tvscript

!

!

!

!!
! Print!
!!
! Process:!
! ./server (Debugger Process ID: 1, System ID: 12110)!
! Thread:!
! Debugger ID: 1.1, System ID: 3083946656!
! Time Stamp:!
! 06-26-2008 14:04:09!
! Triggered from event:!
! actionpoint!
! Results:!
! foreign_addr = {!
! sin_family = 0x0002 (2)!
! sin_port = 0x1fb6 (8118)!
! sin_addr = {!
! s_addr = 0x6658a8c0 (1717086400)!
! }!
! sin_zero = ""!
! } !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 Example
The following tells tvscript to report the contents of the foreign_addr

structure each time the program gets to line 85
-create_actionpoint "#85=>print foreign_addr”

Typical output sample with tvscript:

13

tvscript

Summary

•  Provides process, thread and timestamp
information

•  Provides a single output file, even with multiple
processes

•  Provides many event/action descriptions, including
memory debugging events

•  Supports external script files, utilizing TCL within a
CLI file

•  Allows the generation of even more complex
actions

Facing the Debugging
Challenge

#2

15

Memory Debugging!

Don’t Forget the Memory!

16

What is a Memory Bug?

•  A Memory Bug is a mistake in the management of
heap memory

•  Failure to check for error conditions

•  Leaking: Failure to free memory

•  Dangling references: Failure to clear pointers

•  Memory Corruption

•  Writing to memory not allocated

•  Over running array bounds

• Memory problems can lurk
•  For a given scale or platform or problem, they may not be fatal
•  Libraries could be source of problem
•  The fallout can occur at any subsequent memory access through a

pointer
•  The mistake is rarely fatal in and of itself
•  The mistake and fallout can be widely separated

•  Potentially 'racy'
•  Memory allocation patterns change
•  Even the fallout is not always fatal. It can result in data corruption which

may or may not result in a subsequent crash

17

Why Are Memory Bugs Different?

The Agent and
Interposition!

Malloc API

User Code and Libraries

Process

TotalView
Heap Interposition

Agent (HIA)
Allocation

Table
Deallocation

Table

TotalView HIA Technology

Advantages of TotalView HIA Technology

•  Use it with your existing builds
•  No Source Code or Binary Instrumentation

•  Programs run nearly full speed
•  Low performance overhead

•  Low memory overhead
•  Efficient memory usage

•  Support wide range of platforms and
compilers

TotalView HIA Technology

Advantages of TotalView HIA Technology

•  Use it with your existing builds
•  No Source Code or Binary Instrumentation

•  Programs run nearly full speed
•  Low performance overhead

•  Low memory overhead
•  Efficient memory usage

•  Support wide range of platforms and
compilers

Memory Debugger Features

•  Automatically detect allocation problems
•  View the heap
•  Leak detection

•  Block painting

•  Memory Hoarding
•  Dangling pointer detection

•  Deallocation/reallocation notification

•  Memory Corruption Detection - Guard Blocks
•  Memory Comparisons between processes

•  Collaboration features

22

Enabling Memory Debugging
CONFIGURABILITY

Memory Event Notification

TotalView Technologies Confidential

23

Heap Graphical View

TotalView Technologies Confidential

Leak Detection

•  Leak Detection
•  Based on Conservative

Garbage Collection

•  Can be performed at any
point in runtime

•  Helps localize leaks in
time

•  Multiple Reports

•  Backtrace Report

•  Source Code Structure

•  Graphically Memory
Location

25 25

Memory Corruption Detection
(Guard Blocks)

TotalView Technologies Confidential

26 26

Memory Usage Statistics

TotalView Technologies Confidential

27

Visualize Your
Program’s

Environment…

Facing the Debugging
Challenge

#3

29 29

ReplayEngine
Reverse Debugging

TotalView Technologies Confidential

What is ReplayEngine?

•  Enhances debugging experience
•  Add-on to TotalView

•  Captures execution history
•  Record all external input to program
•  Records internal sources of non-determinism

•  Replays execution history
•  Examine any part of the execution history
•  Step as easily back through code as you do forwards
•  Jump to points of interest

•  Simple extension to TotalView
•  No recompilation or instrumentation
•  The user just says where they want to go
•  Explore data and state in the past just like a live process

•  Supported on Linux x86 and x86-64
•  Supports MPI, Pthreads, and OpenMP

A separately licensed add-on product that providing reverse debugging"

ReplayEngine: Debug in Forward and Reverse!

ReplayEngine's deterministic replay capability records the execution history of
your program and allows bi-directional diagnosis and debugging with TotalView.

•  Step freely forward and backwards through a program’s execution
•  Use Breakpoints and Watchpoints from either direction
•  Examine historical data and execution paths deterministically
•  Works with integrated memory debugging
•  Allows for “rolling history capture” of long-running programs

•  Stop at out of memory
•  Set maximum history buffer size

ReplayEngine is a separately licensed product add-on that extends the
capabilities of TotalView on Linux-86 and Linux-86-64 machines.

Reverse Debugging - ReplayEngine

31

ReplayEngine

An Intuitive User Interface

Step forward over functions

Step forward into functions

Advance forward out of current
Function, after the call

Advance forward to selected line

Step backward over functions

Step backward into functions

Advance backward out of current
Function, to before the call

Advance backward to selected line

Advance forward to “live” session

ReplayEngine

No Replay? (or not running)

No Active Buttons!

Facing the Debugging
Challenge

#4

35

CUDA Debugging

•  Characteristics

–  Debugging of application running on the GPU
device (not in an emulator)

–  Full visibility of both Linux threads and GPU
device threads

§  Device threads shown as part of the parent
Unix process

§  Correctly handle all the differences
between the CPU and GPU

–  Fully represent the hierarchical memory
§  Display data at any level (registers, local,

block, global or host memory)
§  Making it clear where data resides with

type qualification
–  Thread and Block Coordinates

§  Built in runtime variables display threads
in a warp, block and thread dimensions
and indexes

§  Displayed on the interface in the status
bar, thread tab and stack frame

–  Device thread control
§  Warps advance Synchronously

–  Handles CUDA function inlining
§  Step in to or over inlined functions

–  Reports memory access errors
§  CUDA memcheck

–  Can be used with MPI

CUDA Debugging TotalView

•  A Linux-x86_64 CUDA process consists of:
–  A Linux process address space, containing:

§  A Linux executable and a list of Linux shared libraries.
–  A collection of Linux threads, where a Linux thread:

§  Is assigned a positive debugger thread ID.
–  A collection of CUDA threads, where a CUDA thread:

§  Is assigned a negative debugger thread ID.
§  Has its own separate address space

Linux-x86_64 CUDA process (1)
CUDA thread (1.-1)

Device address space
GPU focus thread

Linux process address space

Linux thread (1.2)

Linux thread (1.1)

CUDA thread (1.-2)
Device address space

GPU focus thread

Linux
executable
and shared

libraries
GPU

image

GPU
image

TotalView CUDA Debugging Model

•  Denotes location in hierarchical memory
–  Part of the type – using “@” notation

–  Each memory space has a separate address space so
0x00001234 could refer to several places

•  Used throughout expression system
–  You can cast to switch between

 different spaces

Storage Qualifiers

Debugging CUDA

39

Thread (x,y,z)

GPU focus thread selector for
changing the block (x,y) and
thread (x,y,z) indexes of the
CUDA thread

Block (x,y,z)

Select a line
number in a box to
plant a breakpoint

CUDA host threads
 have a positive
TotalView thread ID

CUDA GPU
threads have a
negative TotalView
thread ID

CUDA grid and block
dimensions, lanes/
warp, warps/SM, SMs,
etc.

Parameter, register,
local and shared
variables

Dive on a variable
name to open a
variable window

| Copyright © 2010 Rogue Wave Software | All Rights Reserved

GPU Device Status Display

Different PC for two
groups of Lanes

State of Lanes
inside the warp

•  Display of PCs
across SMs, Warps
and Lanes

•  Updates as you step

•  Shows what
hardware is
in use

•  Helps you
map between
logical and
hardware
coordinates

Example of
Divergent GPU threads

| Copyright © 2010 Rogue Wave Software | All Rights Reserved

Facing the Debugging
Challenge

#5

ThreadSpotter cache memory optimization tool

–  Analyzes memory bandwidth and latency, data
locality and thread communications

–  Identifies specific issues and pinpoints
troublesome areas in source code

–  Provides guidance towards a resolution

–  Increases productivity for experts and non-experts

0

1

2

3

4

1 2 3 4
App:	 LBM	

Poor parallelism?

Actually, this program is “embarrassingly parallel”

Poor memory usage super-linear slowdown

Performance

Example: Why do more cores = less performance?

#cores	

0

1

2

3

4

1 2 3 4

2.7x

App:	 LBM	

Performance

The Same Application Optimized

Optimization can be rewarding, but costly…
®  Often requires expert knowledge

®  Typically weeks of wading through performance data

 ThreadSpotter’s one-click advice: Change one line

#cores	

How is the silicon used?

45

A rule of thumb

46

Memory system level Relative latency

L1 cache 1x

Higher cache levels 10x

Main memory 100x

Source: AMD, Michael Wall

Simple modifications can make a big difference

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 47

Partially Used Structures

Partially Used Structures

48

Defined data structure includes a,b,c,d… but only uses a & b

Redefined data structure includes a,b,c,d

50%

100%

Alignment Characteristics

| Copyright © 2010 Rogue Wave Software | All Rights Reserved 49

#///
struct DATA
{

 char a;
 int b;
 char c;

};
DATA * pMyData;
///
virtual void Initialize(int nbThread)
{ pMyData = new DATA[36*1024*1024]; }
///

///
struct DATA
{

 int b;
 char a;
 char c;

};
DATA * pMyData;
///
virtual void Initialize(int nbThread)
{ pMyData = new DATA[36*1024*1024]; }

What’s the difference?

Alignment Characteristics

50

44%

75%

Test 4: Inefficient Loop Nesting
Explanation

51

(Limit, if you like, data gathered
here, e.g., start gathering after
after 10 sec. and stop after 10
sec.)

Input arguments

Application to run

Working dir (where to run the app)

Cache size of the target system for
optimization (e.g., L1 or L2 size)

Click this button
to create a report

A One-Click Report Generation

/* Unoptimized Array Multiplication: x = y * z N = 1024 */
for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

/* Unoptimized Array Multiplication: x = y * z N = 1024 */

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

Any Compiler

Binary

n Sampler
Finger
Print
(~4MB)

Host System

Source:
C, C++, Fortran, OpenMP…

Mission:
• Find the SlowSpots™
• Assess their importance
• Enable for non-experts to fix them
• Improve the productivity of experts

Acumem SlowSpotter™

ThreadSpotter

54

/* Unoptimized Array Multiplication: x = y * z N = 1024 */
for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

/* Unoptimized Array Multiplication: x = y * z N = 1024 */

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k] * z[k][j];

 x[i][j] = r;

 }

n Model

Any Compiler

Binary

n Sampler

Finger
Print

(~4MB
)

Target System
Parameters

Host System

n Advice

Where?
How?

Source:
C, C++, Fortran, ADA...

What?

Frontpage

List of bad loops

Spotting the crime

Explaining what to do

Loop Focus Tab

Ed Hinkel
Rogue Wave Software
ehinkel@roguewave.com

